Solution to HWE problem considered in class

Suppose we denote
$\operatorname{Prob}(A A)=P_{1}$
$\operatorname{Prob}(A B)=2 Q_{1}$
$\operatorname{Prob}(B B)=R_{1}$
Then we have seen as a first expression of HWE:
$\operatorname{Prob}(\mathrm{AA})=p_{1}^{2}$
$\operatorname{Prob}(A B)=2 p_{1} q_{1}$
$\operatorname{Prob}(\mathrm{AA})=q_{1}^{2}$
where $p_{1}=\operatorname{Prob}(A), q_{1}=\operatorname{Prob}(B)=1-\operatorname{Prob}(A)$

An alternative way of stating the HWE property is
$Q_{1}^{2}=P_{1} R_{1}$

The question was: What is the connection between expression (3) and the equalities in (2)?

Answer:

Using both expressions (1) and (2),

$$
p_{1}=\sqrt{P_{1}}, \quad q_{1}=\sqrt{R_{1}}
$$

Therefore, $2 \mathrm{p}_{1} \mathrm{q}_{1}=2 \sqrt{P_{1}} \sqrt{R_{1}}$, which is equal to $2 \mathrm{Q}_{1}$ since both $2 \mathrm{p}_{1} \mathrm{q}_{1}$ and $2 \mathrm{Q}_{1}$ refer to $\operatorname{Prob}(A B)$. In other words, after squaring, $Q_{1}^{2}=P_{1} R_{1}$ indeed.

